publications

publications by categories in reversed chronological order. generated by jekyll-scholar.

2024

  1. Amortizing intractable inference in diffusion models for vision, language, and control
    Siddarth Venkatraman*, Moksh Jain*, Luca Scimeca*, and 12 more authors
    Advances in Neural Information Processing Systems, 2024
  2. Learning Diverse Attacks on Large Language Models for Robust Red-Teaming and Safety Tuning
    Seanie Lee, Minsu Kim, Lynn Cherif, and 8 more authors
    Red Teaming GenAI Workshop @ NeurIPS 2024, 2024
  3. Automated Discovery of Pairwise Interactions from Unstructured Data
    Zuheng Xu, Moksh Jain, Alisandra Kaye Denton, and 4 more authors
    arXiv preprint arXiv:2405.18540, 2024
  4. Multi-Fidelity Active Learning with GFlowNets
    Alex Hernandez-Garcia, Nikita Saxena, Moksh Jain, and 2 more authors
    Transactions on Machine Learning Research, 2024
  5. GemBio@ICLR
    Generative Active Learning for the Search of Small-molecule Protein Binders
    Maksym Korablyov, Cheng-Hao Liu, Moksh Jain, and 31 more authors
    In Generative and Experimental Perspectives for Biomolecular Design (GEMBio) workshop @ ICLR, 2024
  6. GemBio@ICLR
    Towards DNA-Encoded Library Generation with GFlowNets
    Michał Koziarski, Mohammed Abukalam, Vedant Shah, and 7 more authors
    In Generative and Experimental Perspectives for Biomolecular Design (GEMBio) workshop @ ICLR, 2024
  7. Amortizing intractable inference in large language models
    Edward Hu*, Moksh Jain*, Eric Elmoznino, and 4 more authors
    In International Conference on Learning Representations, 2024
  8. Pre-Training and Fine-Tuning Generative Flow Networks
    Ling Pan, Moksh Jain, Kanika Madan, and 1 more author
    In International Conference on Learning Representations, 2024
  9. PhyloGFN: Phylogenetic Inference with Generative Flow Networks
    Ming Yang Zhou, Zichao Yan, Elliot Layne, and 5 more authors
    In International Conference on Learning Representations, 2024

2023

  1. Stochastic Generative Flow Networks
    Ling Pan*, Dinghuai Zhang*, Moksh Jain, and 2 more authors
    In Uncertainty in Artificial Intelligence, 2023
  2. Multi-objective gflownets
    Moksh Jain, Sharath Chandra Raparthy, Alex Hernández-Garcı́a, and 4 more authors
    In International Conference on Machine Learning, 2023
  3. GFlowNet-EM for learning compositional latent variable models
    Edward J Hu*, Nikolay Malkin*, Moksh Jain, and 3 more authors
    In International Conference on Machine Learning, 2023
  4. Gflowout: Dropout with generative flow networks
    Dianbo Liu, Moksh Jain, Bonaventure FP Dossou, and 8 more authors
    In International Conference on Machine Learning, 2023
  5. Learning GFlowNets from partial episodes for improved convergence and stability
    Kanika Madan, Jarrid Rector-Brooks, Maksym Korablyov, and 6 more authors
    In International Conference on Machine Learning, 2023
  6. BatchGFN: Generative Flow Networks for Batch Active Learning
    Shreshth A Malik, Salem Lahlou, Andrew Jesson, and 5 more authors
    In Structured Probabilistic Inference and Generative Modeling (SPIGM) workshop @ ICML, 2023
  7. Thompson Sampling for Improved Exploration in GFlowNets
    Jarrid Rector-Brooks, Kanika Madan, Moksh Jain, and 5 more authors
    In Structured Probabilistic Inference and Generative Modeling (SPIGM) workshop @ ICML, 2023
  8. GFlowNets for AI-driven scientific discovery
    Moksh Jain, Tristan Deleu, Jason Hartford, and 3 more authors
    Digital Discovery, 2023
  9. DEUP: Direct Epistemic Uncertainty Prediction
    Salem Lahlou*, Moksh Jain*, Hadi Nekoei, and 5 more authors
    Transactions on Machine Learning Research, 2023

2022

  1. Trajectory balance: Improved credit assignment in gflownets
    Nikolay Malkin, Moksh Jain, Emmanuel Bengio, and 2 more authors
    Advances in Neural Information Processing Systems, 2022
  2. Consistent Training via Energy-Based GFlowNets for Modeling Discrete Joint Distributions
    Chanakya Ekbote, Moksh Jain, Payel Das, and 1 more author
    In Workshop on Human in the Loop Learning @ NeurIPS, 2022
  3. Biological Sequence Design with GFlowNets
    Moksh Jain, Emmanuel Bengio, Alex Hernandez-Garcia, and 8 more authors
    In International Conference on Machine Learning, 2022
  4. Evaluating Generalization in GFlowNets for Molecule Design
    Andrei Cristian Nica, Moksh Jain, Emmanuel Bengio, and 4 more authors
    In Machine Learning for Drug Discovery workshop @ ICLR, 2022

2021

  1. Flow network based generative models for non-iterative diverse candidate generation
    Emmanuel Bengio, Moksh Jain, Maksym Korablyov, and 2 more authors
    Advances in Neural Information Processing Systems, 2021

2020

  1. DROCC: Deep robust one-class classification
    Sachin Goyal, Aditi Raghunathan, Moksh Jain, and 2 more authors
    In International Conference on Machine Learning, 2020

2019

  1. Proximal Policy Optimization for Improved Convergence in IRGAN
    Moksh Jain, and Sowmya Kamath
    Smooth Games Optimization and Machine Learning, NeurIPS 2019, 2019